Adaptive regulation of intestinal thiamin uptake: molecular mechanism using wild-type and transgenic mice carrying hTHTR-1 and -2 promoters.

نویسندگان

  • Jack C Reidling
  • Hamid M Said
چکیده

Thiamin participates in metabolic pathways contributing to normal cellular functions, growth, and development. The molecular mechanism of the human intestinal thiamin absorption process involves the thiamin transporters-1 (hTHTR-1) and -2 (hTHTR-2), products of the SLC19A2 and SLC19A3 genes. Little is known about adaptive regulation of the intestinal thiamin uptake process or the molecular mechanism(s) involved during thiamin deficiency. In these studies, we addressed these issues using wild-type mice and transgenic animals carrying the promoters of the hTHTR-1 and -2. We show that, in thiamin deficiency, a significant and specific upregulation in intestinal carrier-mediated thiamin uptake occurs and that this increase is associated with an induction in protein and mRNA levels of mTHTR-2 but not mTHTR-1; in addition, an increase in the activity of the SLC19A3, but not the SLC19A2, promoter was observed in the intestine of transgenic mice. Similar findings were detected in the kidney; however, expression of both thiamin transporters and activity of both human promoters were upregulated in this organ in thiamin deficiency. We also examined the effect of thiamin deficiency on the level of expression of mTHTR-1 and mTHTR-2 messages and activity of the human promoters in the heart and brain of transgenic mice and found an increase in mTHTR-1 mRNA and a rise in activity of the SLC19A2 promoter in thiamin-deficient mice. These results show that the intestinal and renal thiamin uptake processes are adaptively upregulated during dietary thiamin deficiency, that expression of mTHTR-1 and mTHTR-2 is regulated in a tissue-specific manner, and that this upregulation is mediated via transcriptional regulatory mechanism(s).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiation-dependent up-regulation of intestinal thiamin uptake: cellular and molecular mechanisms.

Differentiation of intestinal epithelial cells is associated with up-and-down regulation of expression of a variety of genes including those involved in nutrient uptake. Nothing is known about possible differentiation-dependent regulation of the intestinal thiamin uptake process and the cellular and molecular mechanisms involved in such regulation. Using as models human-derived intestinal epith...

متن کامل

Thiamin uptake by the human-derived renal epithelial (HEK-293) cells: cellular and molecular mechanisms.

Thiamin (vitamin B(1)) is essential for normal cellular functions. The kidneys play a critical role in regulating body thiamin homeostasis, by salvaging the vitamin via reabsorption from the glomerular filtrate, but little is known about the mechanism(s) and regulation of thiamin transport in the human renal epithelia at cellular and molecular levels. Using the human-derived renal epithelial HE...

متن کامل

Effect of the Cigarette Smoke Component, 4-(Methylnitrosamino)-1-(3-Pyridyl)-1-Butanone (NNK), on Physiological and Molecular Parameters of Thiamin Uptake by Pancreatic Acinar Cells

Thiamin is indispensable for the normal function of pancreatic acinar cells. These cells take up thiamin via specific carrier-mediated process that involves thiamin transporter-1 and -2 (THTR-1 and THTR-2; products of SLC19A2 and SLC19A3 genes, respectively). In this study we examined the effect of chronic exposure of pancreatic acinar cells in vitro (pancreatic acinar 266-6 cells) and in vivo ...

متن کامل

Expression and functional contribution of hTHTR-2 in thiamin absorption in human intestine.

The aim of this study was to investigate expression and relative contribution of human thiamin transporter (hTHTR)-2 toward overall carrier-mediated thiamin uptake by human intestinal epithelial cells. Northern blot analysis showed that the message of the hTHTR-2 is expressed along the native human gastrointestinal tract with highest expression being in the proximal part of small intestine. hTH...

متن کامل

Enteropathogenic Escherichia coli inhibits intestinal vitamin B1 (thiamin) uptake: studies with human-derived intestinal epithelial Caco-2 cells.

Infection with the gram-negative enteropathogenic Escherichia coli (EPEC), a food-borne pathogen, represents a significant risk to human health. Whereas diarrhea is a major consequence of this infection, malnutrition also occurs especially in severe and prolonged cases, which may aggravate the health status of the infected hosts. Here we examined the effect of EPEC infection on the intestinal u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 288 6  شماره 

صفحات  -

تاریخ انتشار 2005